The technology, known as image-based surgical planning and developed with the help of pediatric cardiologists and pediatric surgeons at The Children’s Hospital of Philadelphia (CHOP) and Emory University, creates a three-dimensional model of the child’s heart with data from the child’s MRI scans at different times in the cardiac cycle, also called a 4D MRI. The models allow surgeons to visualize the direction of blood flow and determine any energy loss in the heart. So if a surgeon were planning a certain correction to an area of a child’s heart, a model created by the system would show the surgeon how well blood would flow through the newly configured heart.
The goal of the Georgia Tech/Emory project is to create a complete system that allows surgeons to get a
detailed look at the child’s heart functions with the new MRI system, design surgical procedures for optimum post-operative performance and evaluate the heart’s performance with a sophisticated blood flow computer simulation
Patients with this defect often undergo multiple surgeries to reconfigure the pulmonary and systemic systems in operations called Fontan repairs, a reconfiguration that diverts the blood flow coming to the right side of the heart directly to the lungs so that the heart no longer has to pump blood to the lungs. Staged over several years, these surgeries are a common, but not always successful, option used for treating a single-ventricle defect.
After a less-than-optimal operation, children sometimes experience a reduced capacity to perform physical activities and may experience blood clotting and ventricle arrhythmias. The Georgia Tech/Emory surgery planning system could eliminate the need for additional surgeries by optimizing early surgeries.
“The research is meant to get at the root of the ‘failing’ Fontan, investigating why these pumping chambers fail in the hopes of devising new strategies to give these children a second chance in life. Using advanced imaging and bioengineering tools, the project hopes to describe how blood flows in this type of circulation and how this blood flow might be altered to extend the life of the patients,” said Mark Fogel, M.D., director of cardiac MR in the Cardiac Center at Children’s Hospital and a key collaborator on the project
0 comments:
Post a Comment